
KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) – OPERATING SYSTEMS GROUP

Betriebssysteme
03. Processes

Prof. Dr.-Ing. Frank Bellosa | WT 2016/2017

KIT – Universität des Landes Baden-Württemberg und

nationales Forschungszentrum in der Helmholtz-Gemeinschaft
www.kit.edu

http://www.kit.edu

Where we ended last lecture
The OS provides abstractions for and protection between application

Processes run without privileges in user-space
Kernel governs resources and runs in kernel-space
The distinction between kernel and user-space is made in the CPU
If a process executes a privileged instruction, the CPU calls the kernel
instead

Processes encapsulate all resources needed to run a program
Address space: all memory the process can name
Allocated resources, e.g., open files

Virtual memory implements address spaces which provide protection
between processes

Processes in user-space cannot allocate resources themselves
The kernel provides services that perform privileged actions
Processes can request kernel services using system calls (syscalls)

Processes Address Spaces Compiling, Linking, and Loading

F. Bellosa – Betriebssysteme WT 2016/2017 2/26

Processes

Processes Address Spaces Compiling, Linking, and Loading
Abstraction

F. Bellosa – Betriebssysteme WT 2016/2017 3/26

The Process Abstraction
Computers do “several things at the same time”

There are generally more such “things” than physical processors
It actually just looks this way Þ quick process switching (Multiprogramming)

The process abstraction models this concurrency
Container that contains information about the execution of a program

Resources allocated in the OS and hardware

Conceptually, every process has its own “virtual CPU”
When switching processes, the execution context changes
The dispatcher switches between processes and thus between contexts
On a context switch, the dispatcher saves the current registers and memory
mappings and restores those of the next process

vim (wait for input) (wait for input)

gcc

Processes Address Spaces Compiling, Linking, and Loading
Abstraction

F. Bellosa – Betriebssysteme WT 2016/2017 4/26

Program vs. Process is like Recipe vs. Cooking

Recipe: Lists ingredients and gives an algorithm what to do with them
A program describes the memory layout and CPU instructions

Cooking The activity of using the recipe
A process is the activity of executing a program

Multiple similar recipes may exist for the same dish
Multiple programs may solve the same problem

The same recipe can be cooked by several people in different kitchens
at the same time

The same program can be run at the same time on different CPUs
(as different processes)

The same recipe can be cooked by several people at the same time
The same process can have several worker threads

Processes Address Spaces Compiling, Linking, and Loading
Abstraction

F. Bellosa – Betriebssysteme WT 2016/2017 5/26

Multiprogramming can increase the CPU utilization

With n processes suppose that a process spends fraction p of its time
waiting for I/O to complete, then the CPU utilization = 1 − pn

Processes Address Spaces Compiling, Linking, and Loading
Abstraction

F. Bellosa – Betriebssysteme WT 2016/2017 6/26

Concurrency vs. Parallelism

The OS uses both concurrency and parallelism to implement
multiprogramming

(a) Concurrency/Pseudoparallelism: Multiple processes on the same CPU

(b) Parallelism Processes truly running at the same time with multiple CPUs

In this lecture we will focus on concurrency

Processes Address Spaces Compiling, Linking, and Loading
Abstraction

F. Bellosa – Betriebssysteme WT 2016/2017 7/26

Address Spaces

Processes Address Spaces Compiling, Linking, and Loading
Address Space Layouts

F. Bellosa – Betriebssysteme WT 2016/2017 8/26

Virtual Memory Abstraction: Address Spaces

Every process uses its own virtual addresses (vaddr)
Memory-Management Unit (MMU) relocates each load/store to
physical memory (pmem)
Processes never see physical memory and cannot address it directly

1. VirtualCPU MMU

2b. Fault

Physical
Memory

2a. Physical
AddressAddress

3. Data

+ MMU can enforce protection (mappings are set up in kernel mode)
Processes can only access what they can address
(and cannot change mappings)

+ Programs can see more memory than available
80:20 rule: 80% of process memory idle, 20% active working set
Can keep working set in RAM and rest on disk (relocate dynamically)

– Need special MMU hardware

Processes Address Spaces Compiling, Linking, and Loading
Address Space Layouts

F. Bellosa – Betriebssysteme WT 2016/2017 9/26

A Process’s View of the World: Address Space

Code, data, and state need to be organized within processes resulting
in an address space layout

Generally there are three kinds of data
1. Fixed size data items
2. Data that is naturally free’d in reverse order of allocation
3. Data that is allocated and free’d dynamically “at random”

Compiler and architecture determine e.g., how large an integer is and
what instructions are used in the text section (code)

The loader determines based on an executable file (.exe, .com, ELF)
how an executed program is placed in memory

Processes Address Spaces Compiling, Linking, and Loading
Address Space Layouts

F. Bellosa – Betriebssysteme WT 2016/2017 10/26

1. Fixed-size Data and Code Segments

Some data in programs never changes, other data will be written but
never grows or shrinks

Such memory can be statically allocated when the process is created

The BSS segment (Block Started by Symbol, also: .bss or bss)
Statically-allocated variables and variables that have not been initialized
The executable file typically contains the starting address and size of BSS
The entire segment is initially zero

The data segment
Fixed-size, initialized data elements such as global variables

The read-only data segment
Constant numbers and strings

The BSS, data, and read-only data segments are sometimes
summarized as a single data segment

Ultimately the compiler (linker) and operating system (loader) decide where
to place which data and how many segments exist

Processes Address Spaces Compiling, Linking, and Loading
Address Space Layouts

F. Bellosa – Betriebssysteme WT 2016/2017 11/26

2. Stack Segment

Some data is naturally free’d in reverse order of allocation
push(a)
push(b)
pop(b)
pop(a)

Makes memory management very easy (e.g., stack grows upwards)
Fixed starting point of segment (not explicitly stored in process)
Store top of latest allocation SP (stack pointer), initialized to starting point
Allocate new a byte data structure: SP += a; return (SP - a);
Free a byte data structure: SP -= a;

In current CPUs, stack segment typically grows downwards!
Allocate: SP -= a; return (SP + a); – push CPU instruction
Free: SP += a; – pop CPU instruction

Processes Address Spaces Compiling, Linking, and Loading
Address Space Layouts

F. Bellosa – Betriebssysteme WT 2016/2017 12/26

3. Dynamic Memory Allocation in the Heap Segment

Some data needs to be allocated and free’d dynamically “at random”
E.g., input/output: don’t know how large the data will be
Don’t know how large the text document will get when starting vim

Generally allocate memory in two tiers:

1. Allocate large chunk of memory (heap segment) from OS
Like stack allocation: base address + break pointer (BRK)
Process can get more memory from OS or give back memory by setting
BRK using a system call (e.g., sbrk() in Linux)

2. Dynamically partition large chunk into smaller allocations dynamically
malloc and free commands that can be used in any order
This part happens purely in user-space!
No need to contact kernel at this point!

Processes Address Spaces Compiling, Linking, and Loading
Address Space Layouts

F. Bellosa – Betriebssysteme WT 2016/2017 13/26

Typical Process Address Space Layout
OS Addresses where the kernel is mapped

(cannot be accessed by process)

Stack Local variables, function call
parameters, return addresses

Heap Dynamically allocated data (malloc)

BSS Uninitialized local variables declared as
static

Data Initialized data, global variables

RO-Data Read-only data, strings

Text Program, machine code

Instruction pointer is address in text segment
Stack pointer is lower-most address of stack segment
Program break pointer (BRK) is upper-most address of heap segment

Processes Address Spaces Compiling, Linking, and Loading
Address Space Layouts

F. Bellosa – Betriebssysteme WT 2016/2017 14a/26

Reserved for OS

Stack

Heap

Data

Text

0xFFFFFFFF

0x00000000

AS

Read-Only Data

Data

BSS

Typical Process Address Space Layout
OS Addresses where the kernel is mapped

(cannot be accessed by process)

Stack Local variables, function call
parameters, return addresses

Heap Dynamically allocated data (malloc)

BSS Uninitialized local variables declared as
static

Data Initialized data, global variables

RO-Data Read-only data, strings

Text Program, machine code

Instruction pointer is address in text segment
Stack pointer is lower-most address of stack segment
Program break pointer (BRK) is upper-most address of heap segment

Processes Address Spaces Compiling, Linking, and Loading
Address Space Layouts

F. Bellosa – Betriebssysteme WT 2016/2017 14b/26

Reserved for OS

Stack

Heap

Data

Text

0xFFFFFFFF

0x00000000

AS

Read-Only Data

Data

BSS

Typical Process Address Space Layout
OS Addresses where the kernel is mapped

(cannot be accessed by process)

Stack Local variables, function call
parameters, return addresses

Heap Dynamically allocated data (malloc)

BSS Uninitialized local variables declared as
static

Data Initialized data, global variables

RO-Data Read-only data, strings

Text Program, machine code

Instruction pointer is address in text segment
Stack pointer is lower-most address of stack segment
Program break pointer (BRK) is upper-most address of heap segment

Processes Address Spaces Compiling, Linking, and Loading
Address Space Layouts

F. Bellosa – Betriebssysteme WT 2016/2017 14c/26

Reserved for OS

Stack

Heap

Data

Text

0xFFFFFFFF

0x00000000

AS

Read-Only Data

Data

BSS

Typical Process Address Space Layout
OS Addresses where the kernel is mapped

(cannot be accessed by process)

Stack Local variables, function call
parameters, return addresses

Heap Dynamically allocated data (malloc)

BSS Uninitialized local variables declared as
static

Data Initialized data, global variables

RO-Data Read-only data, strings

Text Program, machine code

Instruction pointer is address in text segment
Stack pointer is lower-most address of stack segment
Program break pointer (BRK) is upper-most address of heap segment

Processes Address Spaces Compiling, Linking, and Loading
Address Space Layouts

F. Bellosa – Betriebssysteme WT 2016/2017 14d/26

Reserved for OS

Stack

Heap

Data

Text

0xFFFFFFFF

0x00000000

AS

Read-Only Data

Data

BSS

Typical Process Address Space Layout
OS Addresses where the kernel is mapped

(cannot be accessed by process)

Stack Local variables, function call
parameters, return addresses

Heap Dynamically allocated data (malloc)

BSS Uninitialized local variables declared as
static

Data Initialized data, global variables

RO-Data Read-only data, strings

Text Program, machine code

Instruction pointer is address in text segment
Stack pointer is lower-most address of stack segment
Program break pointer (BRK) is upper-most address of heap segment

Processes Address Spaces Compiling, Linking, and Loading
Address Space Layouts

F. Bellosa – Betriebssysteme WT 2016/2017 14e/26

Reserved for OS

Stack

Heap

Data

Text

0xFFFFFFFF

0x00000000

AS

Read-Only Data

Data

BSS

Typical Process Address Space Layout
OS Addresses where the kernel is mapped

(cannot be accessed by process)

Stack Local variables, function call
parameters, return addresses

Heap Dynamically allocated data (malloc)

BSS Uninitialized local variables declared as
static

Data Initialized data, global variables

RO-Data Read-only data, strings

Text Program, machine code

Instruction pointer is address in text segment
Stack pointer is lower-most address of stack segment
Program break pointer (BRK) is upper-most address of heap segment

Processes Address Spaces Compiling, Linking, and Loading
Address Space Layouts

F. Bellosa – Betriebssysteme WT 2016/2017 14/26

Reserved for OS

Stack

Heap

Data

Text

0xFFFFFFFF

0x00000000

AS

Read-Only Data

Data

BSS

Compiling, Linking,
and Loading Programs

Processes Address Spaces Compiling, Linking, and Loading
C Linking Loading Shared Libraries

F. Bellosa – Betriebssysteme WT 2016/2017 15/26

The C Programming Language

1966 Martin Richards creates BCPL for building compilers and OS
AmigaOS was originally written in BCPL

1969 Ken Thompson creates B, a simpler version of BCPL for PDP-7

1969-1973 Dennis Ritchie develops C for PDP-11
Highly influenced by B
Maps efficiently to machine instructions Þ well suited for OS development
Origin closely tied to the development of the first Unix

Unix originally written in assembly for PDP-7, then ported to C for PDP-11

C deals with the same objects that computers do
Numbers, characters (basic data types), and addresses (pointers)
Compositions of the above (arrays, structures)
Calls, jumps, and conditional branches (Functions, loops, if/switch)

Read the “K&R”, every computer scientist should read it:
Kernighan and Ritchie’s “The C Programming Language”

Processes Address Spaces Compiling, Linking, and Loading
C Linking Loading Shared Libraries

F. Bellosa – Betriebssysteme WT 2016/2017 16/26

The C Build Process
Headers (.h) are #included and
macros are expanded in the
preprocessor before passing a
.c file to the compiler

There, each .c file is compiled
to an object (.o) file

The Linker combines all .o files
to an executable binary

The .o files need exactly one
main function, the starting point
of the program
Static libraries (.a) may also be
passed

Run nm, objdump, and readelf

on .o and a.out files!

Processes Address Spaces Compiling, Linking, and Loading
C Linking Loading Shared Libraries

F. Bellosa – Betriebssysteme WT 2016/2017 17/26

Compiling – Object Code Files
The object contains instructions and data generated by the compiler

Objects are structured by
Segments (sections), e.g., text segment, data segment
Labels, i.e., function names (not associated with virtual addresses, yet)

square.h
#ifndef SQUARE_H_
#define SQUARE_H_
int square(int);
#endif

square.c
#include "square.h"
int square(int a)
{

return a * a;
}

gcc -m32 -fno-builtin -c square.c

objdump -d square.o

square.o
Disassembly of section .text:

00000000 <square>:
0: 55 push %ebp
1: 89 e5 mov %esp,%ebp
3: 8b 45 08 mov 0x8(%ebp),%eax
6: 0f af 45 08 imul 0x8(%ebp),%eax
a: 5d pop %ebp
b: c3 ret

Processes Address Spaces Compiling, Linking, and Loading
C Linking Loading Shared Libraries

F. Bellosa – Betriebssysteme WT 2016/2017 18/26

Linker
The Linker (Linux: ld) builds the executable from object files by

Arranging segments in non-overlapping memory regions
Constructing a global symbol table which maps labels to addresses
Patching addresses in code (relocation)
Writing the result to the binary file

C++ can contain multiple functions with the same name (overloading)
Compiler mangles function name, parameters (, and compiler version)
to obtain label Þ Mangling not compatible across compiler versions!

In C, the label name is the function name
Linker cannot build binary if multiple functions with the same name exist

Processes Address Spaces Compiling, Linking, and Loading
C Linking Loading Shared Libraries

F. Bellosa – Betriebssysteme WT 2016/2017 19/26

Dynamic Linking

May want to load plugins (e.g., kernel modules/drivers) at runtime!
Don’t have to link everything before writing executable
Linking is nothing magical Þ can link at runtime!

dyn square.c

int dyn_square(int a)
{

return a * a;
}

main.c

void *dyn = dlopen("dyn_square.o", RTLD_LAZY);
int (*square)(int) = dlsym(dyn, "dyn_square");
square(42);

Processes Address Spaces Compiling, Linking, and Loading
C Linking Loading Shared Libraries

F. Bellosa – Betriebssysteme WT 2016/2017 20/26

Loader – Executing a Program

When starting a program, the loader
Reads code/data segments from disk into buffer cache
Maps code read-only and executable
Initializes rw-data and data sections (maps them accordingly)
Allocates space for the heap (sbrk), stack (e.g., 8 MiB)
Allocates space for BSS and nulls it

In reality: Lots of optimizations
Code/data already in cache? Don’t read from disk again
Stack space allocated when used
BSS not allocated and initialized until used
Code lazily loaded when it is first used (demand loading)
Share code with already running processes

Processes Address Spaces Compiling, Linking, and Loading
C Linking Loading Shared Libraries

F. Bellosa – Betriebssysteme WT 2016/2017 21/26

Static Shared Libraries
“Everyone” links standard library

Need to have copies of standard library functions in every executable

Goal: Have shared library file that can be used by “everyone”
Idea: Static shared libraries

Define shared library segment in all processes that use that library
Linker links executable against library segment but doesn’t copy it into
binary file
Loader brings shared library into the buffer cache only once
Þ shares section among all processes that use it (demand loading)

Problem: Now all programs need to have library at same place in
virtual address space!

What if another library already occupies that space?
Needs system-wide pre-allocation of address
What if sum of all libraries gets too big for address space?

Processes Address Spaces Compiling, Linking, and Loading
C Linking Loading Shared Libraries

F. Bellosa – Betriebssysteme WT 2016/2017 22/26

Dynamic Shared Libraries

Idea: Dynamic shared libraries
Allow loading shared library at any virtual address

New problems:
How do you call functions if the position varies?
Runtime linking would prevent code sharing!

Þ ”All problems in computer science can be solved by another level of
indirection“ (David Wheeler)

Solutions: Position-independent code (PIC)
Procedure linkage table (PLT) Table that contains stubs pointing to the GOT
for functions that are linked in dynamically
Þ Now both PIC and non-PIC code can link!
Global offset table (GOT) Table that maps stubs to functions in various
dynamic libraries
Lazy dynamic binding Link each function on its first call, not at startup

Processes Address Spaces Compiling, Linking, and Loading
C Linking Loading Shared Libraries

F. Bellosa – Betriebssysteme WT 2016/2017 23/26

Static vs. Dynamic Shared Libraries

Static Shared Library

main:
 ...
 call printf

printf:
 ...
 ret

libc

program

Dynamic Shared Library

main:
 ...
 call printf

printf:
 call GOT[5]

libc

program

...
[5]: &printf
...

printf:
 ...
 ret

GOT

PLT

Processes Address Spaces Compiling, Linking, and Loading
C Linking Loading Shared Libraries

F. Bellosa – Betriebssysteme WT 2016/2017 24/26

Summary

Processes
Program : Recipe is like Process : Cooking
Processes are a resource container for the OS
For the process it feels like it is alone: it has its own CPU and memory
The OS implements multiprogramming by rapidly switching processes

Compiler: Creates an object file from each source file
Incomplete view of the world
Names functions and variables symbolically

Linker: Combines object files to an executable
Resolves virtual addresses
Decides where everything lives
Finds and updates references to symbols (labels)

Loader: Brings executable in memory and starts program

Processes Address Spaces Compiling, Linking, and Loading

F. Bellosa – Betriebssysteme WT 2016/2017 25/26

Further Reading

Tanenbaum/Bos, “Modern Operating Systems”, 4th Edition:
Pages 73, 85–97

Drepper, “How to Write Shared Libraries” (aka “dso howto”)

Processes Address Spaces Compiling, Linking, and Loading

F. Bellosa – Betriebssysteme WT 2016/2017 26/26

	03. Processes
	Processes
	Abstraction

	Address Spaces
	Address Space Layouts

	Compiling, Linking, and Loading
	C
	Linking
	Loading
	Shared Libraries

